
Mechatronics
MMME3085

Module Convenor – Abdelkhalick Mohammad

State Tables, Finite State
Machines and Interrupt

Lecture 4

Lecture Objectives

• To introduce two simple approaches to the programming of
sequences of events

• To introduce the concepts of:
• State Tables
• Finite State Machines

• To identify some applications of the finite state machine
architecture

• To understand the concept on Interrupt in microprocess and
how they can be implemented on Arduino

• Laboratory 1: Signals and Sensors – Link to Lectures

A typical Mechatronics System

Computer
or micro-
processor

Program
e.g., in C

Buses
in
computer

Digital
signal

Analogue
signal

Digital
signal

Digital
signal

Analogue
signal

Digital signal

Digital
output
inter-
face;
timer

DAC Electronic
hardware

Actuators

Mechanical
system

Digital
input
inter-
face;
counters

Sensors

ADC Electronic
hardware

1,4,10

2,3,10
5,6

7,8,9

Recap

Dealing with “Train of pulses” signal … Timer/Counters

Last time we looked at
• The challenges in using simple interface (e.g., digital

read/write) in counting events or measuring/generating
frequencies

• Why hardware Timer/Counters (T/Cs) can be a
solution for such challenge.

• How to configure the function of T/Cs using registers
• Applications of T/Cs such as frequency generation,

counting high frequency pulses and generating PWM.
• Using datasheet of the Arduino to search configure T/Cs.

Sequences and
States

Why are we interested in sequence?!

Mechatronic systems are often required to perform
tasks in a sequence, either one after the other or
based on external inputs or events.
• Traffic lights: The controller needs to turn the

traffic lights in sequence waiting between the
switching for a specific time to elapse.

• Assembly robot: The robot needs to step
through a sequence of tasks one after the other,
waiting between tasks for the previous task to
complete. The robotic arm would also need to
be able to respond to external inputs, such as
sensors that detect the presence of parts or
tools.

Why are we interested in sequence?!

• We can easily end up with messy code when handling
sequences and decisions of complex systems.

• In the "bad old days" of early programming, "spaghetti
code" was a major issue. Spaghetti code is code that is
difficult to read and understand because it is poorly
structured with tangled logic.

• Frameworks can help us to avoid spaghetti code by
providing an organized way to handle sequences and
decisions.

• Frameworks can also help us to avoid common mistakes,
such as forgetting to handle all possible inputs or
outputting incorrect values.

• There are several different frameworks such as:
§ State machines
§ Decision trees
§ Rule engines

Programming
Vocabulary

One-dimensional (1D) Array

• You should be familiar with the concept of an array in Matlab: a
block of variables with each element identified by an index

• In C the syntax of a 1D array is:
int myArray[arraySize];

• Or if we are declaring and initialising at the same time:
int myArray[arraySize]{10,20,30,40};

• We access each array element as follows:
myArray[index] = 99;

• For example
myArray[0] equals to 10
myArray[1] equals to 20

Two-dimensional (2D) Array

• In practice we often need a 2D array which is effectively a
table of numbers or a matrix:

int my2DArray[firstSize][secSize]
{{10,20},
{30,40},
{50,60}};

• This is indexed using separate square brackets:
my2DArray[rowNum][colNum] equals to 51;

Enumerated Constants

• We may have a limited set of situations each identified by
an integer e.g., 0, 1, 2, 3 etc.

• But it may be easiest to give these numbers names, so it
makes obvious what they refer to

• Use “enumerated constants” e.g.
enum daysOfWeek {SUNDAY, MONDAY, TUESDAY,

WEDNESDAY, THURSDAY, FRIDAY, SATURDAY};

which defines SUNDAY as 0, MONDAY as 1 etc.
• Trying to set a variable of type daysOfWeek to (for

example) 10 will give error & trap a bug!

“switch” Statement

• Sometimes we have to decide between some clearly defined situations, for example associated with
different numbers
• Could use a rather complex if statement or…
• Use a “switch” statement:
enum daysOfWeek {SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY};
int i = 0; // Number of the week days
void setup() {
Serial.begin(9600);
}
void loop() {
for (i = 0; i < 7; i++){
int day=daysOfWeek(i); //if it is Sunday, day will be 0, if Monday it will be 1 and so on
Serial.print("Today is ");
switch (day)
{
case SUNDAY:
Serial.print("SUNDAY: Go for Swiming");
break;
case MONDAY:
Serial.print("Monday: Go to Computer Engineering Lecture");
break;
case TUESDAY:
Serial.print("Tuesday: Go to Computer Engineering Laboratory");
break;
case WEDNESDAY:
Serial.print("Wednesday: Studay Mechatronics and Computer Engineering");
break;
case THURSDAY:
Serial.print("Thursday: Go to Mechatronics Lecture");
break;
case FRIDAY:
Serial.print("Friday: Go to Mechatronics Seminar");
break;
case SATURDAY:
Serial.print("Saturday: Take a rest");
break;
}
Serial.print('\n');
delay(2000);
}}

Today is SUNDAY: Go for Swiming
Today is Monday: Go to Computer Engineering Lecture
Today is Tuesday: Go to Computer Engineering Laboratory
Today is Wednesday: Studay Mechatronics and Computer Engineering
Today is Thursday: Go to Mechatronics Lecture
Today is Friday: Go to Mechatronics Seminar
Today is Saturday: Take a rest
Today is SUNDAY: Go for Swiming
Today is Monday: Go to Computer Engineering Lecture

State Tables and Finite State Machines

Let us consider two situations:
• Straightforward sequences where tasks are executed one after

the other. This can be easily implemented with state tables.
• More complex situations where order varies on-the-fly

depending on inputs: need more complex solution (finite state
machine).

State Tables

State Table Example – Traffic Lights

• Example: Simple traffic lights at junction

Simple traffic lights at a junction are typically
controlled by a single set of lights for each
direction of traffic. The lights can be red,
green, or amber (yellow).

§ Red means stop.
§ Amber means stop if it is safe to do so.
§ Green means you can go, but you must

still give way to pedestrians and other
vehicles that have the right of way.

State Table Example – Traffic Lights

Time? Time?

Time?

Time?

Time?

Time?

Time?

Time?

R1 G2 Rp G1 R2 Rp

Y1 R2 Rp

R1 R2 Rp

R1 R2 Y2 Rp

R1 Y2 Rp

R1 R2 Rp

R1 Y1 R2 Rp

Yes Yes

Yes

Yes

Yes

Yes

Yes

Yes

No No

No

No

No

No

No

No

R1 R2

Time?

Yes No

R1 R2 Y2

Time?

Yes No

R1 G2

Time?

Yes No

R1 Y2

Time?

Yes No

R1 R2

Time?

Yes No

R1 Y1 R2
Time?

Yes No

Y1 R2

Time?

Yes No

G1 R2

Time?

Yes No

R1 R2

State 0
R1 R2

State 1

State 2

State 3

State 4

State 5

State 6

State 7

State Table Example – Traffic Lights

This can be implemented using the Arduino and a board with LEDs or connecting
individual LEDs (and resistors) on a breadboard

Traffic Light Single Control
Panel 3 Colour LED Module

5V For Arduino

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

x x

State Table Example – Traffic Lights

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

x x

Road 2

Road 1

• Use bits 1-3 (Road 2) and 5-7 (Road 1) to
simulate timed phasing at a crossroads

• One way to program this is to construct a
very simple table of containing the states
corresponding to each step in the
sequence (i.e., state table)

• Can then convert array of bits into
binary numbers

• These numbers then converted to
hexadecimal numbers.

• We write a code to send these Hex codes
to PORTA one by one in the same
sequence.

This can be implemented using the Arduino and a board with LEDs or connecting
individual LEDs (and resistors) on a breadboard

State Table Example – Traffic Lights

• Use bits 1-3 (Road 2) and 5-7 (Road 1) to
simulate timed phasing at a crossroads

• One way to program this is to construct a
very simple table of containing the states
corresponding to each step in the
sequence (i.e., state table)

• Can then convert array of bits into binary
numbers

• These numbers then converted to
hexadecimal numbers.

• We write a code to send these Hex codes
to PORTA one by one in the same
sequence.

This can be implemented using the Arduino and a board with LEDs or connecting
individual LEDs (and resistors) on a breadboard

Road 1 Road 2 Hex Time
 coding (sec)

 7 6 5 4 3 2 1 0

 R Y G - R Y G -

 1 0 0 0 1 0 0 0 88 1
 1 1 0 0 1 0 0 0 C8 2
 0 0 1 0 1 0 0 0 28 5
 0 1 0 0 1 0 0 0 48 2
 1 0 0 0 1 0 0 0 88 1
 1 0 0 0 1 1 0 0 8C 2
 1 0 0 0 0 0 1 0 82 5
 1 0 0 0 0 1 0 0 84 2

Road 1 Road 2 Hex Time
 coding (sec)

 7 6 5 4 3 2 1 0

 R Y G - R Y G -

 1 0 0 0 1 0 0 0 88 1
 1 1 0 0 1 0 0 0 C8 2
 0 0 1 0 1 0 0 0 28 5
 0 1 0 0 1 0 0 0 48 2
 1 0 0 0 1 0 0 0 88 1
 1 0 0 0 1 1 0 0 8C 2
 1 0 0 0 0 0 1 0 82 5
 1 0 0 0 0 1 0 0 84 2

Hex Time

State Table Example – Traffic Lights

const int NumStates = 8;
int state = 0;
byte StateTable [NumStates][2]={
{0x88, 1},
{0xC8, 2},
{0x28, 5},
{0x48, 2},
{0x88, 1},
{0x8C, 2},
{0x82, 5},
{0x84, 2}};

void setup() {
DDRA = 0xFF; // Set PORTA as output

Serial.begin(9600); }

void loop() {
Serial.print(state);
Serial.print(' ');
PORTA = StateTable[state][0];
Serial.print(PORTA, HEX);
Serial.print(' ');
Serial.print("Waiting Time is:");
Serial.print(StateTable[state][1]);
Serial.print('\n');
delay(StateTable[state][1]*1000);

if(state < NumStates-1)
{
state++;
}
else
{

state = 0;
}
}

Road 1 Road 2 Hex Time
 coding (sec)

 7 6 5 4 3 2 1 0

 R Y G - R Y G -

 1 0 0 0 1 0 0 0 88 1
 1 1 0 0 1 0 0 0 C8 2
 0 0 1 0 1 0 0 0 28 5
 0 1 0 0 1 0 0 0 48 2
 1 0 0 0 1 0 0 0 88 1
 1 0 0 0 1 1 0 0 8C 2
 1 0 0 0 0 0 1 0 82 5
 1 0 0 0 0 1 0 0 84 2

Road 1 Road 2 Hex Time
 coding (sec)

 7 6 5 4 3 2 1 0

 R Y G - R Y G -

 1 0 0 0 1 0 0 0 88 1
 1 1 0 0 1 0 0 0 C8 2
 0 0 1 0 1 0 0 0 28 5
 0 1 0 0 1 0 0 0 48 2
 1 0 0 0 1 0 0 0 88 1
 1 0 0 0 1 1 0 0 8C 2
 1 0 0 0 0 0 1 0 82 5
 1 0 0 0 0 1 0 0 84 2

Hex Time
0 88 Waiting Time is:1
1 C8 Waiting Time is:2
2 28 Waiting Time is:5
3 48 Waiting Time is:2
4 88 Waiting Time is:1
5 8C Waiting Time is:2
6 82 Waiting Time is:5
7 84 Waiting Time is:2

Code output

State Table Example – Traffic Lights

• This is fine for very simple situations
• Can be extended to cope with

monitoring external inputs instead of
just timing
• For example, monitor port B bit 1

which is connected to traffic sensor
on Road 2

• Have extra item in state table to
indicate “Road 1 stays on green
until car detected on Road 2”

Road 1

Road 2

State Table Example – Traffic Lights

Time? Time?

Time?

Time?

Time?

Time?

Time?

Time?

R1 G2 Rp G1 R2 Rp

Y1 R2 Rp

R1 R2 Rp

R1 R2 Y2 Rp

R1 Y2 Rp

R1 R2 Rp

R1 Y1 R2 Rp

Yes Yes

Yes

Yes

Yes

Yes

Yes

Yes

No No

No

No

No

No

No

No

R1 R2

Time?

Yes No

R1 R2 Y2

Time?

Yes No

R1 G2

Time?

Yes No

R1 Y2

Time?

Yes No

R1 R2

Time?

Yes No

R1 Y1 R2
Time?

Yes No

Y1 R2

Time?

Yes No

G1 R2

Time?

Yes No

R1 R2

State 0
R1 R2

State 1

State 2

State 3

State 4

State 5

State 6

State 7

Stay here until a car
on Road 2 is detected

Road 1 Road 2 Hex Time
 coding (sec)

 7 6 5 4 3 2 1 0

 R Y G - R Y G -

 1 0 0 0 1 0 0 0 88 1
 1 1 0 0 1 0 0 0 C8 2
 0 0 1 0 1 0 0 0 28 5
 0 1 0 0 1 0 0 0 48 2
 1 0 0 0 1 0 0 0 88 1
 1 0 0 0 1 1 0 0 8C 2
 1 0 0 0 0 0 1 0 82 5
 1 0 0 0 0 1 0 0 84 2

Road 1 Road 2 Hex Time
 coding (sec)

 7 6 5 4 3 2 1 0

 R Y G - R Y G -

 1 0 0 0 1 0 0 0 88 1
 1 1 0 0 1 0 0 0 C8 2
 0 0 1 0 1 0 0 0 28 5
 0 1 0 0 1 0 0 0 48 2
 1 0 0 0 1 0 0 0 88 1
 1 0 0 0 1 1 0 0 8C 2
 1 0 0 0 0 0 1 0 82 5
 1 0 0 0 0 1 0 0 84 2

State Table Example – Traffic Lights
const int NumStates = 8;
int state = 0;
byte StateTable [NumStates][3]={
{0x88, 1, 0},
{0xC8, 2, 0},
{0x28, 5, 1},
{0x48, 2, 0},
{0x88, 1, 0},
{0x8C, 2, 0},
{0x82, 5, 0},
{0x84, 2, 0}};

void setup() {
DDRA = 0xFF; // Set PORTA as output

Serial.begin(9600);
}

void loop() {
Serial.print(state);
Serial.print(' ');
PORTA = StateTable[state][0];
Serial.print(PORTA, HEX);
Serial.print(' ');
Serial.print("Waiting Time is:");
Serial.print(StateTable[state][1]);
Serial.print('\n');
delay(StateTable[state][1]*1000);

while(StateTable[state][3] && !(PINB & 0x01));
{
// Just wait here if StateTable[state][3] = 1 and Pin No 1 on Port B goes low (0).
}

if(state < NumStates-1)
{
state++;
}
else
{
state = 0;

}}

Hex Time
0 88 Waiting Time is:1
1 C8 Waiting Time is:2
2 28 Waiting Time is:5
3 48 Waiting Time is:2
4 88 Waiting Time is:1
5 8C Waiting Time is:2
6 82 Waiting Time is:5
7 84 Waiting Time is:2

Code output

State Table Example – Traffic Lights

This is fine for simple situations

• In the examples so far, the sequence is
always the same

• Conditions for moving to next stage
may be simple or a little more complex

• But does not really cope with state
diagrams with branches

R1 R2

Time?
Yes No

R1 R2 Y2

Time?

Yes No

R1 G2

Time?

Yes No

R1 Y2

Time?

Yes No

R1 R2

Time?
Yes No

R1 Y1 R2
Time?

Yes No

Y1 R2

Time?

Yes No

G1 R2

Time?

Yes No

Finite State Machine

What is a Finite State Machine?

• A finite state machine (FSM) is a mathematical model of
computation. It is an abstract machine that can be in a
finite number of states. The machine can change from one
state to another in response to some inputs (conditions);
the change from one state to another is called a transition.

• FSMs are used to model a wide variety of systems,
including:
• Digital circuits
• Software controllers
• Networking protocols
• Natural language processing
• Video games

• The FSM is a powerful way to design a program with
• Events
• Sequences

• Also used in menus for interactive programs

What is a Finite State Machine?

• In our Finite State Machine program, we consider:
• States: typically, a stage of a process involving

some functionality, something your “machine”
will carry on doing until some condition is
satisfied

• Condition: some criterion that is satisfied e.g.,
an external input taking some value resulting in
the machine changing state

• Transition: the act of changing to a new state

State 2

State 1

Condition Condition

Transition

What is a Finite State Machine?

• In our Finite State Machine program, we consider:
• States: typically, a stage of a process involving

some functionality, something your “machine”
will carry on doing until some condition is
satisfied

• Condition: some criterion that is satisfied e.g.,
an external input taking some value resulting in
the machine changing state

• Transition: the act of changing to a new state

State Condition

Transition

An FSM Real-Life Example

• A student may take various states:
• Working
• In room and bored
• Socialising with a friend

• We also consider the default state of “At
home with parents”

• We ignore the cases of sleeping, going
out and eating – this student has spent
all his money on a laptop and an
Arduino to learn Mechatronics and is too
interested in learning it to sleep J

An FSM Real-Life Example

The following events (along with current state)
will influence student’s actions (conditions):

• Work needs doing
• Work finished
• Friend calls
• “Friend” gets obnoxious
• Start of term
• End of term

An FSM Real-Life Example

The actions corresponding to the transitions
are:

• Make a start on work
• Put work away
• Start chatting to friend
• Kick “friend” out of room
• Travel to university
• Travel home

An FSM Real-Life Example

+ Work needs doing
+ Work finished
+ Friend calls
+ “Friend” gets obnoxious
+ Start of term
+ End of term

à Make a start on work
à Put work away
à Start chatting to friend
à Kick “friend” out of room
à Travel to university
à Travel home

We can represent this via a “state
transition diagram”, showing the

events (conditions) prompting
each transition.

• In room & bored
• Working
• In room & bored
• Socialising
• At home
• In room & bored

An FSM Real-Life Example

+ Work needs doing
+ Work finished
+ Friend calls
+ “Friend” gets obnoxious
+ Start of term
+ End of term

à Make a start on work
à Put work away
à Start chatting to friend
à Kick “friend” out of room
à Travel to university
à Travel home

Similarly, we can show the
actions (transitions) involved

in each transition

• In room & bored
• Working
• In room & bored
• Socialising
• At home
• In room & bored

An FSM Real-Life Example

+ Work needs doing
+ Work finished
+ Friend calls
+ “Friend” gets obnoxious
+ Start of term
+ End of term

à Make a start on work
à Put work away
à Start chatting to friend
à Kick “friend” out of room
à Travel to university
à Travel home

• In room & bored
• Working
• In room & bored
• Socialising
• At home
• In room & bored

At home In room Working Socialising
Term starts Travel to uni
Term ends Travel home
Work needed Start work
Work finished Put away
Friend calls Start chatting
Friend nasty Kick friend out

Can now draw table showing actions (transitions) for each combination of current
state and event (condition); greyed-out combinations have no action:

An FSM Real-Life Example

+ Work needs doing
+ Work finished
+ Friend calls
+ “Friend” gets obnoxious
+ Start of term
+ End of term

à Make a start on work
à Put work away
à Start chatting to friend
à Kick “friend” out of room
à Travel to university
à Travel home

• In room & bored
• Working
• In room & bored
• Socialising
• At home
• In room & bored

We can draw another table giving the new states (sometimes amalgamated with first
table by having two fields in each box in table)

At home In room Working Socialising
Term starts In room
Term ends At home
Work needed Working
Work finished In room
Friend calls Socialising
Friend nasty In room

FSM
Practical Example

FSM – Practical Example

• Consider an example which ties in nicely with one of the labs (Lab 1)
• Consider the example of a rotary encoder: used for measuring position of a

leadscrew or similar on a machine tool
• Disc with slits attached to rotating screw and two stationary photo-sensors
• As disc rotates, photo-sensors are activated and de-activated

www.akm.com

FSM – Practical Example

A

B

A
B

A
B

Forwards (counting up)

Backwards(counting down)

Rotary Incremental Encoder

FSM – Practical Example

A

B

A
B

A
B

Forwards (counting up)

Backwards(counting down)

Rotary Incremental Encoder

FSM – Practical Example

A

B

A
B

A
B

Forwards (counting up)

Backwards(counting down)

Rotary Incremental Encoder

FSM – Practical Example

A

B

A
B

A
B

Forwards (counting up)

Backwards(counting down)

Rotary Incremental Encoder

FSM – Practical Example

A

B

A
B

A
B

Forwards (counting up)

Backwards(counting down)

Rotary Incremental Encoder

FSM – Practical Example

A

B

A
B

A
B

Forwards (counting up)

Backwards(counting down)

Rotary Incremental Encoder

FSM – Practical Example

A

B

A
B

A
B

Forwards (counting up)

Backwards(counting down)

Rotary Incremental Encoder

FSM – Practical Example

A

B

A
B

A
B

Forwards (counting up)

Backwards(counting down)

Rotary Incremental Encoder

FSM – Practical Example

A

B

A
B

A
B

Forwards (counting up)

Backwards(counting down)

Rotary Incremental Encoder

FSM – Practical Example

A

B

A
B

A
B

Forwards (counting up)

Backwards(counting down)

Rotary Incremental Encoder

FSM – Practical Example

A

B

A
B

A
B

Forwards (counting up)

Backwards(counting down)

Rotary Incremental Encoder

FSM – Practical Example

A

B

A
B

A
B

Forwards (counting up)

Backwards(counting down)

Rotary Incremental Encoder

Rotary Incremental Encoder

• Single counter no good for detecting direction of motion
• A pair of light sources/detectors phased ¼ cycle apart (“in quadrature”)

will detect direction, need up/down counter

A

B

1 2 3 44 1

0v

0v

5v

5v

AB 01 00 10 11 01 00

FSM – Practical Example

State 1:
A=0,
B=0

State 2:
A=1, B=0

+1

-1

State 3:
A=1, B=1

+1

-1

State 4:
A=0, B=1

+1

-1

-1

+1

error++

Construct a state transition diagram

FSM – Practical Example

• Can now construct a state machine
according to the usual architecture

• Your job will be to:
• Define four states
• Fill in the logic of the state machine

structure so that the code correctly:
• counts up or down as it receives

the pulses on channels A and B, and
• detects error if pulses out of

sequence
• measure movement which occurred!

FSM – Practical Example

Your turn to do the
remaining code!

Lab 1: Signals and Sensors
Link to Lectures

Laboratory 1: Signals and Sensors – Link to Lectures

As explained in the introductory exercise, the overall objectives of this
laboratory are:

• To provide practical experience of interfacing a variety of signal
sources and sensors to the Arduino Mega 2560 using various
peripheral boards

• To give further experience of using the Arduino’s dialect of the C
language

• To provide experience of the interfacing of a servo motor and
incremental encoder using an H bridge, the LS7366R up/down
counter and the Arduino

• To enable students to see in practice the waveforms associated with
pulse width modulation and quadrature encoding.

• To give a “sneak preview” of the use of finite state machines and of
the use of interrupts

Laboratory 1: Signals and Sensors – Link to Lectures

Motor Driver

Encoder
Digital Signal Thermocouple

Analog Signal

Laboratory 1: Signals and Sensors – Link to Lectures

• This is the lab kit which you will use in Lab 1 (different from the “Take-Home” kits)
• More details will be given in the lab!
• Here, I like to focus on few components!

Laboratory 1: Signals and Sensors – Link to Lectures

• This is the lab kit which you will use in Lab 1 (different from the “Take-Home” kits)
• More details will be given in the lab!
• Here, I like to focus on few components!

Arduino Shield – Hardware interface that has been specifically
developed to work for these experiments. All connections you
require to make with the Arduino (for these experiments) can be
made via connectors (no bread board and jumper wires!). The
Shield slots on top of the Arduino.

Laboratory 1: Signals and Sensors – Link to Lectures

• This is the lab kit which you will use in Lab 1 (different from the “Take-Home” kits)
• More details will be given in the lab!
• Here, I like to focus on few components!

Counter Click Board – Daughter board
required to measure shaft rotation speed.
This board slots on top of the Shield.

Laboratory 1: Signals and Sensors – Link to Lectures

• This is the lab kit which you will use in Lab 1 (different from the “Take-Home” kits)
• More details will be given in the lab!
• Here, I like to focus on few components!

So far, we learned two methods to count
pulses
• Polling

§ Arduino language (Lecture 1/2)
§ Registers (Lecture 2)

• Timer/Counter
§ T/Cs on the Arduino (Lecture 3)
§ External T/Cs boards (Lecture 3)

In this lab, we will use three of these methods:
a. Using the Counter Click Board via the

serial communication.
b. Using Arduino Timer to count Encoder

Channel A pulses
c. Using your State Machine code

Which is which?! J

Serial Data Transfer

Serial Data vs. Parallel Data

• So far know how to transfer single bits or (for
example) an 8-bit number all bits at a time:
parallel data

• Obviously need 8 wires (plus ground)
• OK for short distances, impractical for long

(lots of wires, interference etc.)

Output
device

Input
device

D0

D7

GND

Serial Data vs. Parallel Data

• In many situations it is more practical to send the data
one bit at a time down only a single wire plus ground

• Some approaches need more wires for synchronisation
and/or “handshaking”

64

Output
device

Input
device

Clock

Data

GND

1 1 0 0 1 1 0 1

Serial data protocols

• Many serial data transfer protocols:
• USB (various versions e.g., USB3.2)
• RS232 (runs at typically ±12 V, historical standard for terminals

etc.). 2 wires (Tx, Rx), asynchronous, bit rate (“baud rate”)
must be specified

• I2C: 2 wires plus GND, low cost, slow
• SPI: uses 4 wires plus GND, quicker than I2C but needs more

wiring
• MIDI: baud rate 31250, optical isolated

Asynchronous serial communication with the Arduino

• Achieved using two pins (typically 1 & 0):
transmit (Tx) and receive (Rx) + GND

• Based on RS232 concept but uses 5V (~TTL)
voltage levels

• No separate synchronisation signal:
synchronised by synchronisation bit at start,
agreed baud rate (here = bit rate)

66

Tx
Rx

GND

Tx
Rx

GND

Asynchronous serial communication with the Arduino

Start
bit5V

1 0 0 1 0 1 0 0

Stop
bit

0V

idle

• One “master” device can
communicate both ways with
multiple “slave” devices e.g.
• Another Arduino
• A specialist counter e.g., for

quadrature signals (Lab 1!)
• An LCD display

MISO
MOSI
SCK

/SS1

/SS2
/SS3

Slave
device 1

Slave
device 3

Slave
device 2

Master
SPI

device

Serial Peripheral Interface (SPI): example of synchronous serial

• What are the wires?
• Three are common between all

slaves:
• Master input slave output

(MISO)
• Master output slave

input (MOSI)
• Clock (SCK, timing pulses)

• Each slave has slave select (SS)
line: goes LOW to select slave

Serial Peripheral Interface (SPI): example of synchronous serial

MISO
MOSI
SCK

/SS1

/SS2
/SS3

Slave
device 1

Slave
device 3

Slave
device 2

Master
SPI

device

Laboratory 1: Signals and Sensors – Link to Lectures

• This is the lab kit which you will use in Lab 1 (different from the “Take-Home” kits)
• More details will be given in the lab!
• Here, I like to focus on few components!

Counter Click Board – Daughter board
required to measure shaft rotation speed.
This board slots on top of the Shield.

Laboratory 1: Signals and Sensors – Link to Lectures

• This is the lab kit which you will use in Lab 1 (different from the “Take-Home” kits)
• More details will be given in the lab!
• Here, I like to focus on few components!

DC Servomotor Driver (H-Bridge) – Controls the DC
Servomotor. A constant DC voltage across the motor’s
terminals would also spin the motor, but you cannot
control direction or torque produced. The H-Bridge
allows that.

Laboratory 1: Signals and Sensors – Link to Lectures

• This is the lab kit which you will use in Lab 1 (different from the “Take-Home” kits)
• More details will be given in the lab!
• Here, I like to focus on few components!

We can generate PWM using T/Cs!
Hard? J No worries!

We will use an easy way

analogWrite(Pin, val); !!"#$%"&'()"*"+(",--

Laboratory 1: Signals and Sensors – Link to Lectures

• This is the lab kit which you will use in Lab 1 (different from the “Take-Home” kits)
• More details will be given in the lab!
• Here, I like to focus on few components!

Also, for the thermocouple, we will use the
“sister” function of

analogWrite(Pin, val); !!"#$%"&'()"*"+(",--

Which is
val =analogRead(Pin); !!"#$%"&'()"*".*#/"+("

0*,1".-#/

Laboratory 1: Signals and Sensors – Link to Lectures

Power Supply

Oscilloscope

Have a Look Into the Lab
Code!

Setup and Initialisation

/* Configure Timer 5 to count pulses on pin 47 */
pinMode(47, INPUT_PULLUP); // set pin to input with pullup resistor

TCCR5A = 0; // No waveform generation needed.
TCCR5B = (1<<CS50) | (1<<CS51) | (1<<CS52); // Normal mode, clock from pin T5 on rising edge. T5 is Arduinos Pin 47
TCCR5C = 0; // No force output compare.
TCNT5 = 0; // Initialise counter register to zero.
TIMSK5= (1<<TOIE5); // Enable overflow interrupt
sei(); // Enable all interrupts
bigLaps = 0; // Initialise number of overflows

/* Encoder input pins (used for state machine and interrupts) */
#define channelA 2
#define channelB 3

/* Pins used for L298 driver */
#define enA 13 /* PWM output, also visible as LED */
#define in1 8 /* H bridge selection input 1 */
#define in2 9 /* H bridge selection input 2 */
#define minPercent -100.0
#define maxPercent 100.0

/* Used for state machine and encoder reading */
typedef enum states{state1=1, state2, state3, state4};
volatile long int count = 0;
volatile long int error = 0;
volatile states state;
bool channelAState, channelBState;

/* Set encoder pins as input but with pullup resistors*/
pinMode(channelA, INPUT_PULLUP);
pinMode(channelB, INPUT_PULLUP);

/* Configure control pins for L298 H bridge */
pinMode(enA, OUTPUT);
pinMode(in1, OUTPUT);
pinMode(in2, OUTPUT);

//attachInterrupt(digitalPinToInterrupt(channelA), updateEncoderStateMachine, CHANGE);
//attachInterrupt(digitalPinToInterrupt(channelB), updateEncoderStateMachine, CHANGE); This is commented, we will come to it later!

Inside the Loop() Function!

void driveMotorPercent(double percentSpeed)
/* Output PWM and H bridge signals based on positive or negative duty cycle %
*/
{

percentSpeed = constrain(percentSpeed, -100, 100);
int regVal = map(percentSpeed, -100, 100, -255, 255);
analogWrite(enA, (int)abs(regVal));
digitalWrite(in1, regVal>0);
digitalWrite(in2, !(regVal>0));

}

Inside the Loop() Function!

long readEncoderCountFromLS7366R()
/* Reads the LS7366R chip to obtain up/down count from encoder. Reads four

bytes separately then concverts them to a long integer using a union */
{

fourBytesToLong converter; /* Union of four bytes and a long integer */
digitalWrite(chipSelectPin,LOW); /* Make LS7366R active */
SPI.transfer(0x60); // Request count
converter.bytes[3] = SPI.transfer(0x00); /* Read highest order byte */
converter.bytes[2] = SPI.transfer(0x00);
converter.bytes[1] = SPI.transfer(0x00);
converter.bytes[0] = SPI.transfer(0x00); /* Read lowest order byte */

digitalWrite(chipSelectPin,HIGH); /* Make LS7366R inactive */
return converter.result;

}

void SetUpLS7366RCounter(void)
/* Initialiseds LS7366R hardware counter on Counter Click board to read quadrature
signals */
{

/* Control registers in LS7366R - see LS7366R datasheet for this and subsequent
control words */

unsigned char IR = 0x00, MRD0=0x00;

// SPI initialization
SPI.begin();
//SPI.setClockDivider(SPI_CLOCK_DIV16); // SPI at 1Mhz (on 16Mhz clock)
delay(10);

/* Configure as free-running 4x quadrature counter */
digitalWrite(chipSelectPin,LOW); /* Select chip and initialise transfer */
/* Instruction register IR */
IR |= 0x80; /* Write to register (B7=1, B6=0) */
IR |= 0x08; /* Select register MDR0: B5=0, B4=0, B3=1 */
SPI.transfer(IR); /* Write to instruction register */
/* Mode register 0 */
MRD0 |= 0x03; /* 4x quadrature count: B0=1, B1=1 */
/* B2=B3=0: free running. B4=B5=0: disable index. */
/* B6=0: asynchronous index. B7: Filter division factor = 1. */
SPI.transfer(MRD0);
digitalWrite(chipSelectPin,HIGH);

/* Clear the counter i.e. set it to zero */
IR = 0x00; /* Clear the instructino register IR */
digitalWrite(chipSelectPin,LOW); /* Select chip and initialise transfer */
IR |= 0x20; /* Select CNTR: B5=1,B4=0,B3=0; CLR register: B7=0,B6=0 */
SPI.transfer(IR); /* Write to instruction register */
digitalWrite(chipSelectPin,HIGH);

}

Inside the Loop() Function!

void updateEncoderStateMachine()
/* User written code to update state and increment count of state machine */
{
channelAState = digitalRead(channelA);
channelBState = digitalRead(channelB);

switch (state)
{

case state1:
if (channelAState && !channelBState)
{

count++;
state = state2;

}
/* else if a lot of code goes here! */
/* don't forget "break" at end of each case. */

}
}

Your turn to do the
remaining code!

Inside the Loop() Function!

ISR(TIMER5_OVF_vect)
{
//when this runs, you had 65536 pulses counted.
bigLaps++;

}

You have seen this before!

Yes, it is the Interrupt Service Routine ISR
We enabled it like this!

TIMSK5= (1<<TOIE5); // Enable overflow interrupt

Basically, when T/C5 overflows, the μP will execute
this routine/function, typically in a fraction of ms!

What is an Interrupt?!

What is an Interrupt?!

Polling Interrupt

ISR

§ An interrupt in a microprocessor is a signal that requests the microprocessor's attention. It can be generated by
either an external device or by the microprocessor itself. When an interrupt occurs, the microprocessor
suspends the execution of its current program (temporarily) and jumps to a special program called an interrupt
service routine (ISR). The ISR handles the interrupt and then returns control to the main program.

§ Interrupts can be classified into two main types: hardware interrupts and software interrupts.
• Hardware interrupts are generated by external devices.
• Software interrupts are generated by the microprocessor itself, such as when an instruction is executed

that causes an error.

Interrupt in the Lab code!

attachInterrupt(digitalPinToInterrupt(channelA), updateEncoderStateMachine, CHANGE);
attachInterrupt(digitalPinToInterrupt(channelB), updateEncoderStateMachine, CHANGE);

void updateEncoderStateMachine()
/* User written code to update state and increment count of state machine */
{
channelAState = digitalRead(channelA);
channelBState = digitalRead(channelB);

switch (state)
{

case state1:
if (channelAState && !channelBState)
{

count++;
state = state2;

}
/* else if a lot of code goes here! */
/* don't forget "break" at end of each case. */

}
}

/* Encoder input pins (used for state machine and interrupts) */
#define channelA 2
#define channelB 3

/* Set encoder pins as input but with pullup resistors*/
pinMode(channelA, INPUT_PULLUP);
pinMode(channelB, INPUT_PULLUP);

Summary

• Concept of simple state table introduced
• Concept of state diagram introduced
• Finite state machine
• State machine using 2D state table
• State machine based on case statement
• Simple examples:

• Traffic lights
• Traffic lights with car/pedestrian crossing

• Introduction to Lab 1
• Interrupt

